FEM: F-bar in total lagrangian shceme

F-bar method is a element technique used in linear elements to alleviate volumetric locking. This method replaces F of each integration point with F-bar.


Index notation

Displacement interpolation

u_i=N_{iK}d_k

Deformation gradient is calculated as

F_{iA}=\delta_{iA}+N_{iK,A}d_K=\delta_{iA}+B_{iKA}d_K

where d_K is nodal displacement
Total lagrangian shceme without traction and body force is

\delta U=\int P_{iA}\delta F_{iA}dV

and nodal force

R_K=\int P_{iA}B_{iKA}dV

F-bar method: decomposition

\bar{F}_{iA}=(J_0/J)^{1/3}F_{iA}

where J_0 is determinant of the centriod integration point
Replace all F with F-bar in constitutive law

\bar{P}_{iA}=P_{iA}(\bar{F})

Linearization

K_{UU}=\frac{\partial R_K}{\partial d_M}=\int\frac{\partial\bar{P}_{iA}}{\partial\bar{F}_{jB}}\frac{\partial\bar{F}_{jB}}{\partial d_M}dV

where

\begin{align*}
\frac{\partial\bar{F}_{jB}}{\partial d_M}&=\frac{\partial}{\partial d_M}\left(\frac{J_0}{J}\right)^{1/3}F_{jB}+\left(\frac{J_0}{J}\right)^{1/3}\frac{\partial F_{jB}}{\partial d_M}\\
&=\frac13\left(\frac{J_0}{J}\right)^{-2/3}\left[J^{-1}\frac{\partial J_0}{\partial d_M}-\frac{J_0}{J^2}\frac{\partial J}{\partial d_M}\right]F_{jB}+\left(\frac{J_0}{J}\right)^{1/3}B_{jMB}
\end{align*}

and

\frac{\partial J_0}{\partial d_M}=\frac{\partial J_0}{\partial(F_0)_{kC}}\frac{\partial(F_0)_{kC}}{\partial d_M}=J_0(F^{-1}_0)_{Ck}(B_0)_{kMC}

and similarly

\frac{\partial J}{\partial d_M}=JF^{-1}_{Ck}B_{kMC}

now we will have

\frac{\partial\bar{F}_{jB}}{\partial d_M}=\frac13\left(\frac{J_0}{J}\right)^{1/3}[(F^{-1}_0)_{Ck}(B_0)_{kMC}-F^{-1}_{Ck}B_{kMC}]F_{jB}+\left(\frac{J_0}{J}\right)^{1/3}N_{jMB}

Now we will have consistent tangent

K^{UU}_{KM}=\int\bar{C}_{iAjB}B_{iKA}\left\{\frac13[(F^{-1}_0)_{Ck}(B_0)_{kMC}-F^{-1}_{Ck}B_{kMC}]F_{jB}+B_{jMB}\right\}dV

where

\bar{C}_{iAjB}=(J_0/J)^{1/3}\frac{\partial\bar{P}_{iA}}{\partial\bar{F}_{jB}}

ugly huh?

Matrix form

Let’s define an operator to condense 2 indices in one specific order

O[a_{ij}]=\{a\}

Suppose we’re using row-order:

O[a_{ij}]=O\begin{bmatrix}
a_{11}&a_{12}&a_{13}\\
a_{21}&a_{22}&a_{23}\\
a_{31}&a_{32}&a_{33}\\
\end{bmatrix}\rightarrow\begin{Bmatrix}
a_{11}\\a_{12}\\a_{13}\\a_{21}\\a_{22}\\a_{23}\\a_{31}\\a_{32}\\a_{33}\\
\end{Bmatrix}

You can use whatever order you like, just make it consistent
We condense iA,jB at first

\{u\}=[N]\{d\}

and

\{F\}=[B]\{d\}

now

\frac{\partial\{\bar{F}\}}{\partial\{d\}}=\{F\}\{F^{-1}_0\}^T[B_0]-\{F^{-1}\}^T[B]=[\bar{B}]

Note: \{F^{-1}\}=Q[F^{-T}]
So

K_{UU}=\sum_i[\bar{B}]^T[\bar{C}][\bar{B}]^T(\xi_i)w_i

Here Gaussian integration is applied

Box for F-bar in Q4

  1. read coord. and disp.
  2. calculate F_0, the deforamtion gradient at central intpt. \xi=0
  3. Loop over 4 intpt
    1. read \xi_i, calculate F(\xi), [B(\xi)], [N(\xi)]
    2. calculate \bar{F}=(J_0/J)^{1/3}F
    3. calculate stress and tangent P(\bar{F}),[\bar{C}],[\bar{B}]
    4. calculate residual contribution r_i=[N]^T\bar{P}(\xi_i)w_i
    5. calculate stiffness contribution [K]_i=[B]^T[\bar{C}][\bar{B}]w_i
    6. do [K]=[K]+[K]_i and \{r\}=\{r\}+\{r\}_i

Comments

  1. Howdy! Do you know if they make any plugins to assist with Search Engine Optimization? I’m trying
    to get my site to rank for some targeted keywords but I’m not seeing very good gains.
    If you know of any please share. Thank you! I saw similar text here:
    Bij nl

  2. Hi there! Do you know if they make any plugins to help
    with SEO? I’m trying to get my site to rank for some targeted keywords but I’m not seeing very good success.
    If you know of any please share. Appreciate it! I saw similar article here: Eco bij

Leave a Reply

Your email address will not be published. Required fields are marked *